

Figure 1. Profiles of the potential-energy surfaces. The energy is relative to isolated molecules and ions.

Figure 2. Optimized geometries of some important species.
from which $\mathrm{H}_{2} \mathrm{O}$ migrates with little or no barrier $7^{5 \mathrm{~b}}$ to give the product 4: Because of the symmetry of the system, the reverse sequence, $\mathbf{4} \rightarrow \mathbf{7 \rightarrow 6 \rightarrow 5 \rightarrow 4}$, namely $\mathrm{H}_{2} \mathrm{O}$ migration followed by the CH_{3} transfer (not shown in Figure 1 for clarity) is of course equally feasible. The simultaneous path leads directly to the symmetric transition state 8 . The energy difference between the
two barriers is too small for the present level of calculation to exclude either possibility. Both barriers are higher than the barrier 2 without hydration.
In the reaction of the complex 10 with a dihydrated chloride 9, two $\mathrm{H}_{2} \mathrm{O}$ migrations and a CH_{3} transfer-inversion can take place one by one, two by one, or all three simultaneously. We find that the most favorable path is the initial migration of one $\mathrm{H}_{2} \mathrm{O}$ with little or no barrier (11) ${ }^{5 \mathrm{~b}}$ to form the intermediate complex 12, followed by the CH_{3} inversion through the transition state $\mathbf{1 3}$ and the final migration $\mathbf{1 2 \rightarrow 1 1 \rightarrow 1 0}$ of the other $\mathrm{H}_{2} \mathrm{O}$ molecule. The first $\mathrm{H}_{2} \mathrm{O}$ migration ensures that Cl^{-}is hydrated throughout the reaction and keeps the potential energy low. The initial simultaneous $\mathrm{H}_{2} \mathrm{O}$ migration- CH_{3} inversion, $\mathbf{1 0} \boldsymbol{\rightarrow} \mathbf{1 4} \rightarrow$ 12, has a slightly larger barrier but cannot be excluded. The overall barriers $\mathbf{1 3}$ and $\mathbf{1 4}$ for $n=2$ are higher in energy than the corresponding barriers for $n=1$, which in turn is higher than the barrier for $n=0$.

One notes that $\mathrm{H}_{2} \mathrm{O}$ migrations, $6 \rightarrow \mathbf{7} \rightarrow \mathbf{4}$ and $\mathbf{1 2 \rightarrow 1 1 \rightarrow}$ 10, proceed with little or no barrier. The geometry of $\mathbf{1 1}^{\prime}$ in Figure $2,{ }^{5 \mathrm{~b}}$ which is on the path connecting $\mathbf{1 2}$ and $\mathbf{1 0}$, reveals an important role of Cl^{-}in the $\mathrm{H}_{2} \mathrm{O}$ migration; Cl^{-}moves away from the $C_{3 v}$ axis to accompany the migrating $\mathrm{H}_{2} \mathrm{O}$ until $\mathrm{H}_{2} \mathrm{O}$ is delivered to the opposite Cl atom, and then it flips back onto the C_{30} axis. This close association of Cl^{-}keeps the potential energy low for the process.
From the above results, we can suggest even for larger clusters that the first and the last steps are the $\mathrm{H}_{2} \mathrm{O}$ migration possibility simultaneously with the CH_{3} inversion. When n is large and the first solvation shell of halide is completed, the initial interaction involves dehydration and a new feature of the potential surface is expected to appear.

Further studies are in progress and will be published elsewhere. ${ }^{7}$
Acknowledgment. I am grateful to Drs. S. Kato, K. Kitaura, and S. Obara for much advice and discussion. Numerical calculations have been carried out at the IMS Computer Center.

Registry No. $\mathrm{Cl}^{-}, 16887-00-6 ; \mathrm{CH}_{3} \mathrm{Cl}, 74-87-3 ; \mathrm{H}_{2} \mathrm{O}, 7732-18-5$.
(7) Morokuma, K., to be submitted for publication.

Intramolecular Carbocyclic [3 + 2] Cycloaddition via Organopalladium Intermediates

Barry M. Trost* and Dominic M. T. Chan

Samuel M. McElvain Laboratories of Organic Chemistry Department of Chemistry, University of Wisconsin Madison, Wisconsin 53706
 Received December 14, 1981

The intramolecular Diels-Alder reaction offers a powerful solution to many problems in complex natural products synthesis. ${ }^{1}$ Converting olefin geometry into the stereochemistry of saturated carbon combined with forming two rings simultaneously from acyclic precursors accounts for the popularity of this approach. With the increasing importance of cyclopentanoid natural products, an intramolecular cycloaddition-like process that focuses on five-membered ring formation would complement the Diels-Alder reaction in some cases (e.g., toward perhydroindanes) and offer a unique approach in other cases (e.g., toward pentalenes, hirsutanes, etc.). As in eq 1 diyls generated from azo precursors

represent such an approach. ${ }^{2,3}$ We wished to examine an approach

[^0]based upon the cycloadditions of trimethylenemethanepalladium complexes (TMM-Pd). ${ }^{4,5}$ Considering that such a reaction has been shown to be a two-step process, ${ }^{4}$ i.e., conjugate addition followed by $\mathrm{S}_{\mathrm{N}} 2$-like displacement, its success in an intramolecular process can critically depend upon the stereochemistry of the initial addition step (see eq 2). For example, in a bicycloannulation

to a bicyclo[3.3.0]octane, formation of the trans stereochemistry in the first step would seem to preclude the second ring closure. ${ }^{6}$ Thus, either this step must be reversible (an unprecedented type of cleavage of a $\mathrm{C}-\mathrm{C}$ bond) or the initial stereochemistry must be preferentially cis. While neither prospect was particularly bright, the importance of such a process warranted investigation. In this communication, we record our observations and the utility of a new conjunctive reagent, 2-bromo-3-(trimethylsilyl)propene (1).

The key reagent $\mathbf{1}^{7}\left(\mathrm{bp} 82-85^{\circ} \mathrm{C}, 58-60 \mathrm{mmHg}\right)$ forms in 63% yield upon reacting lithium (trimethylsilyl)cyanocuprate ${ }^{8,9}$ in a 3:1 THF-HMPA mixture at $0^{\circ} \mathrm{C}$ with 2,3 -dibromopropene. The corresponding magnesium derivative is generated either by metal-halogen exchange with tert-butyllithium (ether, $-78^{\circ} \mathrm{C}$) followed by addition of anhydrous magnesium bromide or by direct reaction with magnesium turnings in THF. The bifunctional aldehyde partners are formed by standard olefination and oxidation routes from the appropriate diols in the cases of $2,73,{ }^{7}$ and 4^{7} and from 10 -undecenal in the case of 5 . ${ }^{7}$

The cyclization experiments show a sensitivity toward the purity of substrates 6-9. ${ }^{7}$ To ensure dryness, either pretreatment with
(2) Intramolecular [3+2] cycloadditions of heteroatom 1,3-dipoles are well known. See: Oppolzer, W. Angew. Chem., Int. Ed. Engl. 1977, 16, 10.
(3) Little, R. D.; Muller, G. W. J. Am. Chem. Soc. 1981, 103, 2744.
(4) Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1979, 101, 6429, 6432; 1980, 102, 6359.
(5) For codimerizations of olefins with methylenecyclopropanes see: Binger, P.; Germer, A. Chem. Ber. 1981, 114, 3325. Binger, P.; Schuchardt, U. Ibid. 1981, 114, 3313; 1980, 113, 3334. Binger, P. Synthesis 1973, 427.
(6) The trans-fused bicyclo[3.3.0]octane is $7 \mathrm{kcal} / \mathrm{mol}$ more strained than the cis. Baneth, J. W.; Linstead, R. P. J. Chem. Soc. 1935, 436; Engler, E. M.; Andose, J. D.; Schleyer, P. v. R. J. Am. Chem. Soc. 1973, 95, 8005.
(7) This compound has been fully characterized by spectral means and satisfactory elemental composition determined by either combustion analysis and/or high-resolution mass spectroscopy. Selected spectral data for 1, 6, 7, 8, 11, 13, 17, and 18 appear as supplementary material.
(8) Prepared by reacting 0.8 equiv of (trimethylsilyl)lithium [Still, W. C. J. Org. Chem. 1976, 41, 3063] with 1.2 equiv of CuCN .
(9) Cf. Fleming, I.; Roessler, F. J. Chem. Soc., Chem. Commun. 1980, 276. Fleming, I.; Ager, D. J. Ibid. 1978, 178.

${ }^{a} \mathrm{AcCl}$, catalyst DMAP, $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$.
O, N-bis(trimethylsilyl)acetamide and/or its addition to the reaction mixture is performed. Freshly purified substrate is also preferable.

Treatment of 6 with $9 \mathrm{~mol} \%$ of $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{4} \mathrm{Pd}(10)$ in the presence of $9 \mathrm{~mol} \%$ of additional triphenylphosphine in refluxing THF produces a 30% yield of 11^{7} as well as a 40% yield of the triene

11, $\mathrm{EWG}=\mathrm{CO}_{2} \mathrm{Et}$
$13, \mathrm{EWG}=\mathrm{SO}_{2} \mathrm{Ph}$
12 (see eq 3). ${ }^{7}$ Use of (dppe) ${ }_{2} \mathrm{Pd}^{10}$ and added dppe causes a drop in the yield of 11 to 18% and an increase of 12 to 54%. On the other hand, use of $8-9 \mathrm{~mol} \%$ of 10 and $4-6 \mathrm{~mol} \%$ of dppe increased the yield of the desired cyclization product to $51-52 \%$. While in this case the triene $\mathbf{1 2}$ is isolated and characterized, in most preparative cyclizations addition of maleic anhydride to the crude reaction mixture in $\mathrm{CHCl}_{3}\left(60^{\circ} \mathrm{C}\right)$ followed by chromatographic purification conveniently removes the triene byproducts and permits easy isolation of the pure cyclization products.

14
Treatment of 7 with a similar catalyst system in refluxing DME gives the bicyclo[3.3.0]octyl ring system (i.e., $13, \mathrm{mp} 62-66^{\circ} \mathrm{C}$) in an astonishing 65% yield. A temperature dependence is observed. In THF at $46-48^{\circ} \mathrm{C}$, the yield is only 27%, whereas in refluxing THF it is 45%. That the cyclization product was indeed the cis-fused system 13 is easily demonstrated by desulfonylation ${ }^{11}$ to 14 , whose spectral properties are identical with an authentic sample. ${ }^{12}$ The stereochemistry of the EWG as exo is suggested by NMR data. For example, 11 isomerized to $\mathbf{1 5}^{7}\left(\mathrm{TsOH}, \mathrm{CDCl}_{3}\right.$, $55^{\circ} \mathrm{C}$) in which $J_{\mathrm{ab}}=3.6 \mathrm{~Hz}$ is in good agreement with the corresponding coupling of 2.5 Hz in $16 .{ }^{13}$ The cycloadduct 13

16
shows $\mathrm{Eu}(\text { fod })_{3}$-induced shifts of 356 Hz for H_{c}, about the same for $\mathrm{H}_{\mathrm{a}}(362 \mathrm{~Hz})$, but considerably larger than for $\mathrm{H}_{\mathrm{b}}(221 \mathrm{~Hz})$-a pattern in agreement with the sulfone being syn to two vicinal protons as in 13. The facts that the trans stereochemistry of 6 and 7 should translated into the exo products ${ }^{4}$ and that attempts

[^1]to equilibrate 11 with base led to no change in stereochemistry support the assignments presented.

Subjection of $\mathbf{8}$ to the same reaction conditions leads to a 70%

19
8

a, $\mathrm{Z}=\mathrm{CH}_{2}$
b, $Z=0$
yield of the bicyclo[4.3.0]nonanes 17^{7} and $1 \mathbf{1 8}^{7}$ in a 2:1 ratio. That the mixture resulted from a mixture of ring-juncture isomers and not from the stereochemistry of the sulfone is demonstrated by desulfonylation $\left(6 \% \mathrm{Na}(\mathrm{Hg}), \mathrm{Na}_{2} \mathrm{HPO}_{4}, \mathrm{CH}_{3} \mathrm{OH}\right)^{14}$ to $19 \mathrm{a}^{7}$ and $20 \mathrm{a}^{7}$ in the same ratio. Ozonolysis $\left(\mathrm{O}_{3}, \mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78\right.$ ${ }^{\circ} \mathrm{C}$) and comparison (spectrally and chromatographically) of the resulting ketone mixture of $\mathbf{1 9 b}$ and $\mathbf{2 0 b}$ to an authentic sample ${ }^{14}$ assign the major isomer to the cis-fused series and the minor isomer to the trans-fused series. Note that the stereochemistry of the sulfone group in both products faithfully reflects the stereochemistry of the starting olefin.

The reaction is best envisioned in the two-step manner depicted in eq 2. That nucleophilic attack must be initiated by the carbon atom of the TMM-Pd moiety bearing the electron-releasing alkyl substituent is in accord with our earlier work on the methylsubstituted series. ${ }^{15}$ The surprising success of the process for formation of the bicyclo[3.3.0]octyl system raises the specter of the initial addition being reversible. Carbon leaving groups in retro-Michael reactions are rare-usually requiring release of strain energy or formation of an exceptionally stabilized anion. Unfortunately, the question of the relative stability of TMM-Pd cannot be addressed at the moment. A more probable explanation lies in the initial addition proceeding preferentially to give the cis adduct in the first step. While steric factors argue against such a proposal, this step does involve conversion of a β-zwitterion-like species (i.e., the TMM-Pd complex) to one with greater separation of charge. Initial formation of a cis five-membered ring minimizes this charge separation. The formation of both isomers in the bicyclo[4.3.0]nonyl system supports this view. Once again, the cis isomer dominates. However, the ability to place the two substituents in a diequatorial arrangement not only can minimize charge separation but also can relieve unfavorable skew interactions. Thus, formation of the trans-fused product begins to compete. Additional evidence favoring this interpretation arises from the failure of 9 to give a bicyclic product since the initial Michael addition requires formation of the unfavorable tenmembered ring. It is interesting to contrast this failure with the facility of palladium-initiated macrocyclizations of allylic acetates to form a very unfavorable ring size. ${ }^{16}$ In these latter cases charge neutralization accompanying the cyclization accounts for their successes; in the former case, charge separation must occur and the reaction fails. Fortunately, it is clear that an intramolecular [$3+2]$ strategy is feasible in appropriate cases. The facility of forming the desired substrates by utilizing 1 suggests the above may be a very useful strategy in synthesis of multicyclic compounds bearing at least one cyclopentanoid ring.

[^2]Acknowledgment. We thank the National Science Foundation and the National Institutes of Health, General Medical Sciences, for their generous support of our programs. We thank Englehard Industries and Johnson Matthey and Co. for supplies of palladium salts. D.M.T.C. acknowledges receipt of a Standard Oil of Ohio Fellowship. We also like to acknowledge Professor Gassman for providing spectra of 14 and Professor Larock for spectra and an authentic sample of $\mathbf{1 9 b}$ and $\mathbf{2 0 b}$.

Registry No. 1, 81790-10-5; 2, 59612-36-1; 3, 81790-11-6; 4, 81790-12-7; 5, 81790-13-8; 6, 81790-14-9; 7, 81790-15-0; 8, 81790-16-1; 9, 81790-17-2; 11, 81790-18-3; 12, 81790-19-4; 13, 81790-20-7; 14, 70598-79-7; 15, 81790-21-8; 17, 81790-22-9; 18, 81790-23-0; 19a, 52775-75-4; 19b, 2826-65-5; 20a, 81790-24-1; 20b, 16783-22-5; lithium (trimethylsilyl)cyanocuprate, 81802-36-0; 2,3-dibromopropene, 513-31-5.

Supplementary Material Available: Spectral data for 1, 6, 7, 8, 11, 13, 17, and 18 (2 pages). Ordering information is given on any current masthead page.

Synthesis of Jaborosalactone A, B, and D ${ }^{\mathbf{1}}$

Masao Hirayama, ${ }^{\dagger}$ Keiju Gamoh, and Nobuo Ikekawa*
Department of Chemistry, Tokyo Institute of Technology Meguro, Tokyo 152, Japan Received January 19, 1982

Withanolides, a group of naturally occurring steroids with an ergostane-type skeleton, have been isolated from the plants of the Solanaceae family. ${ }^{2 a}$ Several members possess interesting biological activities, mainly antitumor ${ }^{2 b}$ and insect antifeedant properties. ${ }^{2 c}$ Their novel structures, which include the highly oxygenated $A: B$ rings and also include the side-chain lactone, have made them an attractive synthetic target. Although several synthetic approaches to the functionalities have been made, ${ }^{3}$ a total synthesis has not yet been accomplished.

In this communication, we report the synthesis of jaborosalactone A (1a), ${ }^{4 \mathrm{a}} \mathrm{B}(\mathbf{1 b}),{ }^{4 \mathrm{a}}$ and $\mathrm{D}(\mathbf{1 c})^{4 \mathrm{~b}}$ as a first synthesis of withanolides from a readily available steroid (Scheme I). The key strategy involves the side-chain synthesis in which the correct configuration at C_{22} is generated via the (22S)-22,23-epoxide 7 , and the hydroxymethyl unit at C_{25} is introduced into the C_{25} anion equivalent of 9 , the enolate of 11a.

Commercially available 3β-hydroxy-22,23-bisnorchol-5-enoic acid (2) was transformed into the triol diacetate 4. ${ }^{5}$ In four steps 4 was converted to the 1,3-bis(methoxymethyl) (MOM) ether 5 of the 22 -olefin in good yield. Generation of the R configuration at C_{22} was efficiently accomplished through the transformation of the chiral $22(S)$-epoxide 7 , which was prepared from 5 by the

[^3]
[^0]: (1) For recent reviews see: Brieger, G.; Bennett, J. N. Chem. Rev. 1980, 80, 63. Kametani, T.; Nemoto, H. Tetrahedron 1981, $37,3$.

[^1]: (10) dppe $=1,2$-bis(diphenylphosphino)ethane.
 (11) Trost, B. M.; Arndt, H. C.; Strege, P. E.; Verhoeven, T. R. Tetrahedron Lett. 1976, 3477.
 (12) Gassman, P. G.; Valcho, J. J.; Proehl, G. S.; Copper, C. F. J. Am. Chem. Soc. 1980, 102, 6519.
 (13) Mao, M. Ph.D. Thesis, University of Wisconsin, Madison, WI, 1980. A coupling of $7-9 \mathrm{~Hz}$ would be expected for the epimer. Cf. Takeuchi, S.; Ogawa, Y.; Yonehara, H. Tetrahedron Lett. 1969, 2737.

[^2]: (14) Larock, R. C.; Dertte, K.; Potter, G. F. J. Am. Chem. Soc. 1980, 102, 190. The equilibrium ratio of $\mathbf{1 9 b}$ to $\mathbf{2 0 b}$ is $\mathbf{3 : 1}$. See: House, H. O.; Rasmusson, A. H. J. Org. Chem. 1963, $28,31$.
 (15) Trost, B. M.; Chan, D. M. T. J. Am. Chem. Soc. 1981, 103, 5972. Gordon, D. J.; Fenske, R. F.; Nanninga, T. N.; Trost, B. M. Ibid. 1981, 103, 5974.
 (16) Trost, B. M.; Verhoeven, T. R. J. Am. Chem. Soc. 1977, 99, 3867; Tetrahedron Lett. 1978, 2275; J. Am. Chem. Soc. 1979, 101, 1595; Ibid. 1980, 102, 4743.

[^3]: ${ }^{*}$ Present address: Central Research Laboratories, Meiji Seika Kaisha, Ltd., Kohoku, Yokohama 222, Japan.
 (1) Synthetic Studies of Withanolides. 5. Part 4: Hirayama, M.; Gamoh, K.; Ikekawa, N. Chem. Lett. 1982, 491.
 (2) (a) For a review on the withanolides, see: Glotter, E.; Kirson, I.; Lavie, D.; Abraham, A. "Bio-Organic Chemistry"; van Tamelen, E. E., Ed.; Academic Press: New York, 1978; Vol. 2. (b) Shohat, B.; Gitter, S.; Abraham, A.; Lavie, D. Cancer Chemother. Rep. 1967, 51, 271. (c) Begley, M. J.; Crombie, L.; Ham, P. J.; Whiting, D. A. J. Chem. Soc., Perkin Trans. 1 1976, 296.
 (3) For synthetic approaches to the side-chain moieties, see: Kajikawa, A.; Morisaki, M.; Ikekawa, N. Tetrahedron Lett. 1975, 4135. Ishiguro, M.; Hirayama, M.; Saito, H.; Kajikawa, A.; Ikekawa, N. Heterocycles 1981, 15 , 823. For syntheses of the A:B ring moieties, see: Ishiguro, M.; Kajikava, A.; Haruyama, T.; Ogura, Y.; Okubayashi, M.; Morisaki, M.; Ikekawa, N. J. Chem. Soc., Perkin Trans. 1 1975, 2295. Weissenberg, M.; Lavie, D.; Glotter, E. Ibid. 1977, 795.
 (4) (a) Tschesche, R.; Schwang, H.; Legler, G. Tetrahedron 1966, 22, 1121. Tschesche, R.; Schwang, H.; Fehlhaber, H. W.; Snatzke, G. Ibid. 1966, 22, 1129. (b) Tschesche, R.; Baumgarth, M.; Welzel, P. Ibid. 1968, 24, 5169. Acnistoferin, reported by Bukovits and Gros (Bukovits, G. J.; Gros, E. G. Phytochemistry 1979, 18, 1237) is identical with jaborosalactone D.
 (5) Fuerst, A.; Labler, L.; Meier, W. Ger. Offen. 1978, 2,746,107; Chem. Abstr. 1978, 89, 60008f.

